Abstract
This study proposes fabric composites with improved static and dynamic puncture via increasing a friction force to restrain the slide of filaments as well as the compression and abrasion between the fibers and the puncture probe. The the bi-layered shell layers of composite fabrics are composed of aramid staple fibers and nylon staple fibers and a layer of low-melting-point polyester (LPET). The nonwoven layer consisting of recycled aramid and nylon staple fibers provides a shear effect to dissipate part of the puncture energy. Reinforcing interlayers include a woven fabric and PET filaments that are circularly aggregated between the surface layers, providing isotropic filament reinforcement and strengthening the resistance against the tip of the puncture probe. The reinforcing filaments may slide after the employment of needle punching, and to compensate for this disadvantage, the LPET layers are used to thermal bond the composite fabrics and the total thickness is controlled at 2 mm. The thermally bonded fabric composites are evaluated in terms of puncture resistance, thereby examining the effects of fabric structure and thermal bonding. According to the test results, the optimal composite structure is the sample N/L/W/F/L/N, which was reinforced by the LPET adhesive layer and irregularly aligned filaments. The sample which used the LPET adhesive layer had a positive influence on static puncture resistance and dynamic puncture resistance, preventing the slide of filaments, but the poor interfacial combination only contributed to limited reinforcement.
Funder
Ministry of Science and Technology of Taiwan
Subject
Polymers and Plastics,General Chemistry
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献