Modelling the Temperature Dependent Biaxial Response of Poly(ether-ether-ketone) Above and Below the Glass Transition for Thermoforming Applications

Author:

Turner Josh A.ORCID,Menary Gary H.,Martin Peter J.,Yan Shiyong

Abstract

Desire to accurately predict the deformation behaviour throughout industrial forming processes, such as thermoforming and stretch blow moulding, has led to the development of mathematical models of material behaviour, with the ultimate aim of embedding into forming simulations enabling process and product optimization. Through the use of modern material characterisation techniques, biaxial data obtained at conditions comparable to the thermoforming process was used to calibrate the Buckley material model to the observed non-linear viscoelastic stress/strain behaviour. The material model was modified to account for the inherent anisotropy observed between the principal directions through the inclusion of a Holazapfel–Gasser–Ogden hyperelastic element. Variations in the post-yield drop in stress values associated with deformation rate and specimen temperature below the glass transition were observable, and facilitated in the modified model through time-temperature superposition creating a linear relationship capable of accurately modelling this change in yield stress behaviour. The modelling of the region of observed flow stress noted when above the glass transition temperature was also facilitated through adoption of the same principal. Comparison of the material model prediction was in excellent agreement with experiments at strain rates and temperatures of 1–16 s−1 and 130–155 °C respectively, for equal-biaxial mode of deformation. Temperature dependency of the material model was well replicated with across the broad temperature range in principal directions, at the reference strain rate of 1 s−1. When concerning larger rates of deformation, minimum and maximum average error levels of 6.20% and 10.77% were noted. The formulation, and appropriate characterization, of the modified Buckley material model allows for a stable basis in which future implementation into representative forming simulations of poly-aryl-ether-ketones, poly(ether-ether-ketone) (PEEK) and many other post-yield anisotropic polymers.

Funder

Department for the Economy (DfE)

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3