Solvent-Free Synthesis of Amidated Carboxymethyl Cellulose Derivatives: Effect on the Thermal Properties

Author:

Pettignano Asja,Charlot Aurélia,Fleury Etienne

Abstract

The present work explores the possibility of chemically modifying carboxymethyl cellulose (CMC), a widely diffused commercial cellulose ether, by grafting of hydrophobic moieties. Amidation of CMC, at high temperature and in heterogeneous conditions, was selected as synthetic tool for grafting on CMC a panel of commercially available amines (bearing long aliphatic chains, alkyl aromatic and heteroaromatic groups, more or less spaced from the cellulose backbone). The reaction was successfully carried out in absence of solvents, catalysts and coupling agents, providing a promising and more sustainable alternative to conventional amidation procedures. Relationships between the chemical structure of the obtained CMC derivatives and their thermal properties were carefully studied, with a particular attention to the thermal behavior. Grafting of aromatic and heteroaromatic alkyl amines, presenting a linear alkyl chain between CMC backbone and a terminal bulky moiety, allowed for efficiently separating the polysaccharide chains, improving their mobility and resulting in a consequent lowering of the glass transition temperature (Tg). The Tg values obtained (90–147 °C) were found to be closely dependent on both the size of the aliphatic spacer, the structure of the aromatic ring and the extent of amidation.

Funder

Agence Nationale de la Recherche

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Reference46 articles.

1. Polysaccharide Building Blocks: A Sustainable Approach to the Development of Renewable Materials;Habibi,2012

2. Chitosan films and blends for packaging material

3. Biodegradable and Biobased Polymers for Environmental and Biomedical Applications;Kalia,2016

4. Furfuryl‐ and Maleimido Polysaccharides: Synthetic Strategies Toward Functional Biomaterials

5. Cellulose;Klemm,2005

Cited by 51 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3