Enhanced Photovoltaic Performance in D-π-A Copolymers Containing Triisopropylsilylethynyl-Substituted Dithienobenzodithiophene by Modulating the Electron-Deficient Units

Author:

Tong Junfeng,An Lili,Lv Jie,Guo Pengzhi,Wang Xunchang,Yang Chunyan,Xia Yangjun

Abstract

Three alternated D-π-A type 5,10-bis(triisopropylsilylethynyl)dithieno[2,3-d:2′,3′-d′]-benzo[1,2-b:4,5-b′]dithiophene (DTBDT-TIPS)-based semiconducting conjugated copolymers (CPs), PDTBDT-TIPS-DTBT-OD, PDTBDT-TIPS-DTFBT-OD, and PDTBDT-TIPS-DTNT-OD, bearing different A units, including benzothiadiazole (BT), 5,6-difluorinated-BT (FBT) and naphtho[1,2-c:5,6-c′]-bis[1,2,5]thiadiazole (NT), were designed and synthesized to investigate the impact of the variation in electron-deficient units on the properties of these photovoltaic polymers. It was exhibited that the down-shifted highest occupied molecular orbital energy level (EHOMO), the enhanced aggregation in both the chlorobenzene solution and the solid film, as well as the better molecular planarity, were achieved using methods involving fluorination and the replacement of BT with NT on the polymer backbone. The absorption profile was little changed upon fluorination; however, it was greatly broadened during replacement of BT with NT. Consequently, the optimized photovoltaic device based on the PDTBDT-TIPS-DTNT-OD exhibited synchronous enhancements in the open-circuit voltage (VOC) of 0.88 V, the short-circuit current density (JSC) of 7.21 mA cm−2, and the fill factor (FF) of 52.99%, resulting in a drastic elevation in the PCE by 129% to 3.37% compared to that of the PDTBDT-TIPS-DTBT-OD. This was triggered by PDTBDT-TIPS-DTNT-OD’s broadened absorption, deepened EHOMO, improved coplanarity, and enhanced SCLC mobility (which increased 3.9 times), as well as a favorable morphology of the active layer. Unfortunately, the corresponding PCE deteriorated after incorporating fluorine into the BT, due to the oversized aggregation and large phase separation morphology in the blend films, severely impairing its JSC. Our preliminary results demonstrated that the replacement of BT with NT in a D-π-A type polymer backbone was an effective strategy of tuning the molecular structure to achieve highly efficient polymer solar cells (PSCs).

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3