Abstract
Recent studies have highlighted an innovative way to produce highly porous materials based on cellulose fibers. These studies have focused on the foam-forming process, where the cellulose fibers and other components are mixed with foam. In the authors’ previous research, the foam-formed cellulose materials (FCM) were obtained by mixing a surfactant with cellulose fibers, taken from virgin pulp and recovered papers. In the present paper, the authors performed additional experimental and computational analyses in order to evaluate the sound insulation capabilities of these FCM beyond the initial impedance of tube investigations. The poroacoustics computational methodology parameters—i.e., airflow resistivity, porosity, tortuosity, viscous, and thermal characteristic lengths—were herein evaluated. This analysis was performed using both a theoretical/empirical approach from the specialized literature and an experimental investigation developed by the authors. The computational investigations were conducted in two stages: First, we evaluated the approximation of the experimentally gained normal incidence parameters, in terms of absorption and reflection, respectively, relative to the estimated ones. The second stage of analysis consists of a parametrical estimation of sound insulation characteristics concerning the incidence angle of sound hitting the porous layer. The results presented in this paper are in agreement with the computational experimental results, providing extended soundproof characteristics to the incidence angle of the acoustic field. Further, this study supplies additional information useful for future analyses regarding the influences of random geometry air inclusions into the FCM layer.
Subject
Polymers and Plastics,General Chemistry
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献