A Composite Hydrogel with High Mechanical Strength, Fluorescence, and Degradable Behavior for Bone Tissue Engineering

Author:

Wang Yanqin,Xue Yanan,Wang Jinghui,Zhu Yaping,Zhu Yu,Zhang Xuehui,Liao Jingwen,Li Xiaona,Wu Xiaogang,Qin Yi-Xian,Chen Weiyi

Abstract

In this work, to obtain a novel composite hydrogel with high mechanical strength, fluorescence and degradable behavior for bone tissue engineering, we prepare a nanofiller and double-network (DN) structure co-enhanced carbon dots/hydroxyapatite/poly (vinyl alcohol) (CDs/HA/PVA) DN hydrogel. The composite hydrogels are fabricated by a combination of two fabrication techniques including chemical copolymerization and freezing‒thawing cycles, and further characterized by FTIR, XRD, etc. Additional investigations focus on the mechanical properties of the hydrogel with varying mass ratios of CDs to PVA, HA to PVA and different numbers of freezing/thawing cycles. The results show that the as-prepared CDs3.0/HA0.6/PVA DN9 hydrogel has optimized compression properties (Compression strength = 3.462 MPa, Young’s modulus = 4.5 kPa). This is mainly caused by the synergism effect of the nanofiller and chemical and physical co-crosslinking. The water content and swelling ratio of the CDs/HA/PVA SN and DN gels are also systematically investigated to reveal the relationship of their microstructural features and mechanical behavior. In addition, in vitro degradation tests of the CDs/HA/PVA DN hydrogel show that the DN hydrogels have a prominent degradable behavior. So, they have potential to be used as high-strength, self-tracing bone substitutes in the biomedical engineering field.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3