Morphology Control in a Dual-Cure System for Potential Applications in Additive Manufacturing

Author:

Campbell Jonathan,Inglis Harrison,Ng WeiLong Elson,McKinley Cheylan,Lewis David

Abstract

The polymerisation, morphology and mechanical properties of a two-component in-situ reacting system consisting of a rubbery dimethacrylate and a rigid epoxy polymer were investigated. The methacrylate component of the mixture was photocured using UV light exposure and, in a second curing process, the mixture was thermally postcured. The polymers formed a partially miscible system with two glass transition temperature (Tg) peaks measured using dynamic mechanical thermal analysis (DMTA). The composition and relative rate of reaction of the two orthogonal polymerisations influenced the extent of miscibility of the two polymer-rich phases and the samples were transparent, indicating that the two phases were finely dispersed. The addition of a glycidyl methacrylate compatibiliser further increased the miscibility of the two polymers. The utility of this polymer system for additive manufacturing was investigated and simulated through layer-by-layer processing of the mixture in two steps. Firstly, the methacrylate component was photocured to solidify the material into its final shape, whilst the second step of thermal curing was used to polymerise the epoxy component. With the use of a simulated photomask, a simple shape was formed using the two orthogonal polymerisation stages to produce a solid object. The mechanical properties of this two-phase system were superior to a control sample made only of the methacrylate component, indicating that some reinforcing due to polymerisation of the epoxy across the interfaces had occurred in the postcuring stage.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3