Methylene-Bridged Tridentate Salicylaldiminato Binuclear Titanium Complexes as Copolymerization Catalysts for the Preparation of LLDPE through [Fe]/[Ti] Tandem Catalysis

Author:

Luo Yani,Li Jian,Luo Derong,You Qingliang,Yang Zifeng,Li TingchengORCID,Li Xiandan,Xie GuangyongORCID

Abstract

A novel tandem catalysis system consisted of salicylaldiminato binuclear/mononuclear titanium and 2,6-bis(imino)pyridyl iron complexes was developed to catalyze ethylene in-situ copolymerization. Linear low-density polyethylene (LLDPE) with varying molecular weight and branching degree was successfully prepared with ethylene as the sole monomer feed. The polymerization conditions, including the reaction temperature, the Fi/Ti molar ratio, and the structures of bi- or mononuclear Ti complexes were found to greatly influence the catalytic performances and the properties of obtained polymers. The polymers were characterized by differential scanning calorimetry (DSC), high temperature gel permeation chromatography (GPC) and high temperature 13C NMR spectroscopy, and found to contain ethyl, butyl, as well as some longer branches. The binuclear titanium complexes demonstrated excellent catalytic activity (up to 8.95 × 106 g/molTi·h·atm) and showed a strong positive comonomer effect when combined with the bisiminopyridyl Fe complex. The branching degree can be tuned from 2.53 to 22.89/1000C by changing the reaction conditions or using different copolymerization pre-catalysts. The melting points, crystallinity and molecular weights of the products can also be modified accordingly. The binuclear complex Ti2L1 with methylthio sidearm showed higher capability for comonomer incorporation and produced polymers with higher branching degree and much higher molecular weight compared with the mononuclear analogue.

Funder

National Natural Science Foundation of China

Opening Project of Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, Jianghan University

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3