Global and Local Aging in Differently Stabilized Polypropylenes Exposed to Hot Chlorinated Water with and without Superimposed Mechanical-Environmental Loads

Author:

Fischer JoergORCID,Lang Reinhold,Bradler PatrickORCID,Freudenthaler Paul,Buchberger Wolfgang,Mantell Susan

Abstract

The influence of chlorinated water on the global and local aging behavior of polypropylene (PP) was investigated for three differently stabilized PP grades consisting of the same PP base polymer. While one of the PP grades contained only a processing stabilizer (PP-S0), the other two were modified with a primary phenolic antioxidant (PP-S1) and a combination of a primary phenolic antioxidant and a hindered amine stabilizer (PP-S3). To study global aging effects, micro-sized specimens were pre-exposed to chlorinated water (5 mg/L free chlorine) at 60 °C for up to 750 h. Over the entire exposure period, significant material aging was detected by monitoring a continuous decrease in stabilizer content, oxidation induction temperature, mean molar mass, and mechanical strain at break. In terms of aging resistance and ultimate mechanical performance, PP-S1 was found to outperform the other two material formulations under these test conditions. Moreover, superimposed mechanical-environmental fatigue tests with cracked round bar specimens were carried out with the three PP grades in non-chlorinated (0 mg/L free chlorine) and chlorinated (5 mg/L free chlorine) water at 80 °C and 95 °C to study local crack tip aging effects. While the fatigue crack growth resistance substantially deteriorated for all three materials in chlorinated water, a significantly stronger effect was found for the higher temperature, with crack growth rates at a given stress intensity factor range in chlorinated water being ca. 30 to 50 times faster than in non-chlorinated water, depending on the material. Molar mass measurements of material samples taken from various positions of the tested CRB specimens provided clear evidence of enhanced local crack tip aging due to the chlorinated water environment.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Reference52 articles.

1. ISO/TC 138/SC 2 Plastics pipes and fittings for water supplies,2013

2. Specification for Pressure-Rated Polypropylene (PP) Piping Systems,2007

3. Polypropylene and Other Polyolefins;Gahleitner,2017

4. Aging behavior and lifetime assessment of polyolefin liner materials for seasonal heat storage using micro-specimen

5. Global Aging and Lifetime Prediction of Polymeric Materials for Solar Thermal Systems-Part 1: Polypropylene Absorbers for Pumped Systems;Grabmann,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3