Abstract
Covalently crosslinked nanogels are widely explored as drug delivery systems and sensors. Radical polymerization provides a simple, inexpensive, and broadly applicable approach for their preparation, although the random nature of the reaction requires careful study of the final chemical composition. We demonstrate how the different reactivities of the monomers influence the total degree of incorporation into the polymer matrix and the role played by the experimental parameters in maximizing polymerization efficiency. Nanogels based on N-isopropylacrylamide, N-n-propylacrylamide, and acrylamide crosslinked with N,N’-methylenebisacrylamide were included in this study, in combination with functional monomers N-acryloyl-l-proline, 2-acrylamido-2-methyl-1-propanesulfonic acid, and 4-vinyl-1H-imidazole. Total monomer concentration and initiator quantities are determining parameters for maximizing monomer conversions and chemical yields. The results show that the introduction of functional monomers, changes in the chemical structure of the polymerizable unit, and the addition of templating molecules can all have an effect on the polymerization kinetics. This can significantly impact the final composition of the matrices and their chemical structure, which in turn influence the morphology and properties of the nanogels.
Funder
Associazione Italiana per la Ricerca sul Cancro
Subject
Polymers and Plastics,General Chemistry
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献