A Novel One-Pot Synthesis of Poly(Propylene Carbonate) Containing Cross-Linked Networks by Copolymerization of Carbon Dioxide, Propylene Oxide, Maleic Anhydride, and Furfuryl Glycidyl Ether

Author:

Gao Lijun,Chen Xianggen,Liang Xiangjun,Guo Xiuzhi,Huang Xianling,Chen Caifen,Wan Xiaodan,Deng Ruyu,Wu Qifeng,Wang Lingyun,Feng Jiuying

Abstract

The thermoplastic poly(propylene carbonate) (PPC) containing cross-linked networks was one-pot synthesized by copolymerization of carbon dioxide, propylene oxide (PO), maleic anhydride (MA), and furfuryl glycidyl ether (FGE). The copolymers were characterized by Fourier transform infrared spectroscopy (FT-IR), gel permeation chromatography (GPC), differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA) measurements. The thermal and dimensional stability of the copolymers were improved. When the MA and FGE load increased from 1 mol% to 4 mol% of PO, the copolymers contained the gel contents of 11.0%–26.1% and their yields were about double that of the PPC. The 5% weight-loss degradation temperatures (Td,-5%) and the maximum weight-loss degradation temperatures (Td,max) increased from 149.7–271.3 °C and from 282.6–288.6 °C, respectively, corresponding to 217.1 °C and 239.0 °C of PPC. Additionally, the hot-set elongation tests showed that the copolymers exhibited elasticity and dimensional stability with the minimum permanent deformation of 6.5% which was far less than that of PPC of 157.2%, while the tensile strengths were a little lower than that of PPC because of the following two conflicting factors, cross-links and flexibility of the units formed by the introduced third monomers, MA and FGE. In brief, we provide a novel method of one-pot synthesis of PPC containing cross-linked networks. According to this idea, the properties would be more extensively regulated by changing the cross-linkable monomers.

Funder

NSFC

NSF of Guangdong Province

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3