Abstract
This paper presents a method for the preparation of nanocomposite cellulose fibers doped with silver nanoparticles (AgNPs), as well as the effect of silver nanoparticles on the structure and properties of fibers. The fibers were obtained by an environmentally friendly method using N-Methylmorpholine N-oxide (NMMO) as a solvent, in a non-polluting closed system. Doping with silver nanoparticles was carried out as a direct (in situ) reduction of Ag+ ions in the presence of a stabilizing agent during the preparation of the spinning solution. SEM images of the surface and cross section of the fibers showed that the distribution of nanoparticles in the fibers’ volume was uniform. The fibers exhibited very good antibacterial properties in relation to Staphylococcus aureus, Escherichia coli, Acinetobacter baumannii, and Candida albicans. Flammability analysis showed that the fibers were subjected to a one-stage combustion process and that the silver nanoparticles reduced the heat release rate (HRR) of the fibers by 36%. TG studies showed that the modification of cellulose fibers with silver nanoparticles promoted the formation of mill scale in the combustion of fibers, which was directly related to the reduction of flammability. Tests of the electrical properties showed that the linear resistance of cellulose fibers containing 3 wt % silver was 108 Ω/cm.
Funder
Ministerstwo Nauki i Szkolnictwa Wyzszego
Subject
Polymers and Plastics,General Chemistry
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献