Synthesis and Electrospinning of Polycaprolactone from an Aluminium-Based Catalyst: Influence of the Ancillary Ligand and Initiators on Catalytic Efficiency and Fibre Structure

Author:

Kouparitsas Ioannis K.,Mele Elisa,Ronca SaraORCID

Abstract

In the present study, we investigated the catalytic performance of a 2,2′-methylenebis(6-tert-butyl-4-methylphenol) (MDBP)–aluminium complex for the ring-opening polymerisation (ROP) of ε-caprolactone in combination with various alcohols as initiators. Three different alcohols were investigated: 1-adamantanemethanol (A), 1H,1H,2H,2H-perfluoro-1-octanol (F) and isopropanol (I). Samplings of polycaprolactone (PCL) at various reaction times showed a linear increase in the polymer molecular weight with time, with very narrow polydispersity, confirming the living nature of the catalytic system. Scanning electron microscope (SEM) images of electrospun PCL fibre mats produced from 30 wt % dichloromethane/dimethyl sulfoxide solutions showed a high level of surface porosity with a reasonable homogeneity of fibre diameters. The values of the liquid absorption and water contact angle were measured for the electrospun mats, with the F-capped PCL consistently showing absorption values up to three times higher than those of PCL samples capped with the other two alcohols, as well as increased hydrophobicity. The nature of the alcohol can influence the surface hydrophobicity and absorption ability of electrospun fibres, demonstrating the possibility of tailoring material properties through controlled polymerisation.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3