Stabilization of Pickering Emulsions by Hairy Nanoparticles Bearing Polyanions

Author:

Zhang Ying,Chen KaiminORCID,Cao Lan,Li Kai,Wang Qiaoling,Fu Enyu,Guo XuhongORCID

Abstract

Pickering emulsions are increasingly applied in drug delivery, oil–water separation, composite materials preparation, and other fields. However, systematic studies on the stabilization of Pickering emulsions to satisfy the growing application demands in multiple fields with long-term conservation are rare. Compared to conventional solid nanoparticles, polyanion-modified hairy nanoparticles are more stable in practical environments and are investigated in this study. Poly (sodium p-styrenesulfonate) was grafted to a polystyrene (PS) core via a photoemulsion polymerization. A hairy nanoparticle bearing polyanions called poly (sodium p-styrenesulfonate) brush (PS@PSS) was synthesized. The size and uniformity of the Pickering emulsions stabilized by PS@PSS were investigated via a polarizing microscope. The stability of Pickering emulsions were optimized by adjusting critical factors like ultrasonic power and time, standing time, oil phases, salt concentration, and water:oil ratio. Results indicated that the Pickering emulsions could be stabilized by PS@PSS nanoparticles, which showed remarkable and adjustable partial wetting properties. It was found that the optimized conditions were ultrasonic power of 150 W, ultrasonic time of 3 min, salt concentration of 0.1 mM, oil phase of hexadecane, and water:oil ratio of 1:1. The formation and stability of Pickering emulsion are closely related to the hairy poly (sodium p-styrenesulfonate) brush layer on the nanoparticle surface.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3