Computer-Aided Design of Molecularly Imprinted Polymers for Simultaneous Detection of Clenbuterol and Its Metabolites

Author:

Zhang Bingcheng,Fan Xin,Zhao DayunORCID

Abstract

Molecular imprinting technology (MIT) offers an effective technique for efficient separation and enrichment of specific analytes from complicated matrices and has been used for illicit veterinary drug detectionin recent years due to its high selectivity, good chemical stability, and simple preparation. The development of in silico-based approaches has enabled the simulation of molecularly imprinted polymers (MIPs) to facilitate the selection of imprinting conditions such as template, functional monomer, and the best suitable solvent. In this work, using density functional theory (DFT), the molecularly imprinted polymers of clenbuterol and its metabolites were designed by computer-aided at B3LYP/6-31 + G (d, p) level. Screening molecular imprinting components such as functional monomers, cross-linkers, and solvents has been achieved in the computational simulation considerations. The simulation results showed that methacrylic acid (MAA) is the best functional monomer; the optimal imprinting ratio for both clenbuterol (CLB) and its dummy template molecule of phenylephrine (PE) to functional monomer is 1:3, while the optimal imprinting ratio for the two dummy template molecules of CLB’s metabolites is 1:5. Choosin gethyleneglycol dimethacrylate (EDGMA) as a crosslinker and aprotic solvents could increase the selectivity of the molecularly imprinted system. Atoms in Molecules (AIM) topology analysis was applied to investigate the template-monomer complexes bonding situation and helped to explain the nature of the reaction in the imprinting process. These theoretical predictions were also verified by the experimental results and found to be in good agreement with the computational results. The computer-simulated imprinting process compensates for the lack of clarity in the mechanism of the molecular imprinting process, and provides an important reference and direction for developing better recognition pattern towards CLB and its metabolite analytes in swine urine samples at the same time.

Funder

Shanghai Jiao Tong University

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3