Surface Modification of Cellulose Nanocrystals with Succinic Anhydride

Author:

Leszczyńska Agnieszka,Radzik Paulina,Szefer Ewa,Mičušík Matej,Omastová Mária,Pielichowski KrzysztofORCID

Abstract

The surface modification of cellulose nanocrystals (CNC) is a key intermediate step in the development of new functionalities and the tailoring of nanomaterial properties for specific applications. In the area of polymeric nanocomposites, apart from good interfacial adhesion, the high thermal stability of cellulose nanomaterial is vitally required for the stable processing and improvement of material properties. In this respect, the heterogeneous esterification of CNC with succinic anhydride was investigated in this work in order to obtain CNC with optimised surface and thermal properties. The influence of reaction parameters, such as time, temperature, and molar ratio of reagents, on the structure, morphology and thermal properties, were systematically studied over a wide range of values by DLS, FTIR, XPS, WAXD, SEM and TGA methods. It was found that the degree of surface substitution of CNC increased with the molar ratio of succinic anhydride to cellulose hydroxyl groups (SA:OH), as well as the reaction time, whilst the temperature of reaction showed a moderate effect on the degree of esterification in the range of 70–110 °C. The studies on the thermal stability of modified nanoparticles indicated that there is a critical extent of surface esterification below which only a slight decrease of the initial temperature of degradation was observed in pyrolytic and oxidative atmospheres. A significant reduction of CNC thermal stability was observed only for the longest reaction time (240 min) and the highest molar ratio of SA:OH. This illustrates the possibility of manufacturing thermally stable, succinylated, CNC by controlling the reaction conditions and the degree of esterification.

Funder

Narodowe Centrum Nauki

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 57 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3