Author:
Jung Hye-Rim,Yang Su-Yeon,Moon Yu-Mi,Choi Tae-Rim,Song Hun-Suk,Bhatia Shashi,Gurav Ranjit,Kim Eun-Jung,Kim Byung-Gee,Yang Yung-Hun
Abstract
Polyhydroxyalkanoate (PHA) is a potential substitute for petroleum-based plastics and can be produced by many microorganisms, including recombinant Escherichia coli. For efficient conversion of substrates and maximum PHA production, we performed multiple engineering of branched pathways in E. coli. We deleted four genes (pflb, ldhA, adhE, and fnr), which contributed to the formation of byproducts, using the CRISPR/Cas9 system and overexpressed pntAB, which catalyzes the interconversion of NADH and NADPH. The constructed strain, HR002, showed accumulation of acetyl-CoA and decreased levels of byproducts, resulting in dramatic increases in cell growth and PHA content. Thus, we demonstrated the effects of multiple engineering for redirecting carbon flux into PHA production without any concerns regarding simultaneous deletion.
Subject
Polymers and Plastics,General Chemistry
Cited by
59 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献