Direction Dependent Electrical Conductivity of Polymer/Carbon Filler Composites

Author:

Kunz Karina,Krause Beate,Kretzschmar Bernd,Juhasz Levente,Kobsch Oliver,Jenschke Wolfgang,Ullrich Mathias,Pötschke PetraORCID

Abstract

The method of measuring electrical volume resistivity in different directions was applied to characterize the filler orientation in melt mixed polymer composites containing different carbon fillers. For this purpose, various kinds of fillers with different geometries and aspect ratios were selected, namely carbon black (CB), graphite (G) and expanded graphite (EG), branched multiwalled carbon nanotubes (b-MWCNTs), non-branched multiwalled carbon nanotubes (MWCNTs), and single-walled carbon nanotubes (SWCNTs). As it is well known that the shaping process also plays an important role in the achieved electrical properties, this study compares results for compression molded plates with random filler orientations in the plane as well as extruded films, which have, moreover, conductivity differences between extrusion direction and perpendicular to the plane. Additionally, the polymer matrix type (poly (vinylidene fluoride) (PVDF), acrylonitrile butadiene styrene (ABS), polyamide 6 (PA6)) and filler concentration were varied. For the electrical measurements, a device able to measure the electrical conductivity in two directions was developed and constructed. The filler orientation was analyzed using the ratio σin/th calculated as in-plane conductivity σin-plane (σin) divided by through-plane conductivity σthrough-plane (σth). The ratio σin/th is expected to increase with more pronounced filler orientation in the processing direction. In the extruded films, alignment within the plane was assigned by dividing the in-plane conductivity in the extrusion direction (x) by the in-plane conductivity perpendicular to the extrusion direction (y). The conductivity ratios depend on filler type and concentration and are higher the higher the filler aspect ratio and the closer the filler content is to the percolation concentration.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3