The Use of Lanthanum Ions and Chitosan for Boron Elimination from Aqueous Solutions

Author:

Kluczka JoannaORCID,Dudek Gabriela,Kazek-Kęsik AlicjaORCID,Gnus Małgorzata,Krzywiecki Maciej,Mitko Krzysztof,Krukiewicz KatarzynaORCID

Abstract

Boron is an essential element for plants and living organisms; however, it can be harmful if its concentration in the environment is too high. In this paper, lanthanum(III) ions were introduced to the structure of chitosan via an encapsulation technique and the obtained hydrogel (La-CTS) was used for the elimination of the excess of B(III) from modelling solutions. The reaction between boric acid and hydroxyl groups bound to the lanthanum coordinated by chitosan active centres was the preponderant mechanism of the bio-adsorption removal process. The results demonstrated that La-CTS removed boric acid from the aqueous solution more efficiently than either lanthanum hydroxide or native chitosan hydrogel, respectively. When the initial boron concentration was 100 mg/dm3, the maximum adsorption capacity of 11.1 ± 0.3 mg/g was achieved at pH 5 and the adsorption time of 24 h. The successful introduction of La(III) ions to the chitosan backbone was confirmed by Scanning Electron Microscopy with Energy Dispersive X-Ray Spectroscopy, Fourier-Transform Infrared Spectroscopy, X-Ray Diffraction, X-ray Photoelectron Spectroscopy, and Inductively Coupled Plasma Optical Emission Spectroscopy. Due to its high-performance boron adsorption-desorption cycle and convenient form, La-CTS seems to be a promising bio-adsorbent for water treatment.

Funder

Politechnika lska

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Reference63 articles.

1. Boron Separation Processes;Kabay,2015

2. Biogeochemistry of Trace Elements;Kabata-Pendias,1999

3. Guidelines for Drinking-Water Quality,2011

4. Utilization of fly ash zeolite for boron removal from aqueous solution

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3