A Dissipative Particle Dynamics Study of Flow Behaviors in Ultra High Molecular Weight Polyethylene/Polyamide 6 Blends Based on Souza-Martins Method

Author:

Wang ,Li ,Cao ,ShijieRen ,Yu

Abstract

This paper presents our study on the use of dissipative particle dynamics (DPD) simulations to discover the flow behavior in ultra high molecular weight polyethylene/polyamide 6 (UHMWPE/PA6) blends associated with extensional-shear coupled flow, based on the Souza-Martins method, for the first time. By way of simulations, we aimed at investigating the mesoscopic morphology and alignment behavior in response to extensional-shear coupled flow, in comparison with simple shear flow and simple extensional flow. Our results reveal that the aggregation of polymers is noticeable under zero flow, as expected. Within the considered range of extensional-shear coupled rates, the morphology transforms from micelle-like clusters to a chain-like network structure by increasing coupled rates from 0.01 to 2.0. Furthermore, it shows a linear distribution along the flow direction at a high coupled rate. It can be concluded that the flow behaviors in UHMWPE/PA6 blends are significantly impacted by extensional-shear coupled rates. The orientation behavior induced by extensional-shear coupled flow is more obvious than shear flow, even though flow variations and mass fractions yield less effects on the distribution behaviors of UHMWPE/PA6 blends. The DPD results are verified by mean square displacement (MSD) as a function of simulation time and relative concentration distribution along Z direction.

Funder

the Science and Technology Planning Project of Guangzhou

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3