Abstract
In this study, nanocrystalline cellulose (NCC) was grafted with lauric acid, palmitic acid, and stearic acid and used as stabilizer to prepare styrene butyl acrylate emulsion. The properties of the emulsion were determined, and the mechanism of modified NCC (MNCC) stabilized emulsion was analyzed. Results showed that long-chain fatty acids were grafted to NCC through esterification initiated at a low temperature. When the dosage of L-MNCC, P-MNCC, and S-MNCC was 0.05%, the styrene-acrylic emulsion had 92.5%, 94.2%, and 96.3% conversion rates, respectively, and exhibited good dilution, pH, Ca2+, and centrifugal stability. The particle size of styrene-acrylic emulsion was approximately 460 nm, and the absolute value of the Zeta potential increased with the MNCC concentration. According to the images of optical microscopy and the transmission electron microscope, the MNCC was adsorbed onto the surface of styrene-acrylic emulsion droplets. The synergistic effect from the electrostatic repulsion of MNCC, the hydrophile lipophilicity of MNCC, and the spatial hindrance of the MNCC adsorption layer provided good stability for the styrene-acrylic emulsion. Therefore, MNCC could replace traditional surfactants in stabilizing emulsion.
Funder
Natural Science Foundation of Shandong Province
Subject
Polymers and Plastics,General Chemistry
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献