Fabrication of ZnO-Al2O3-PTFE Multilayer Nano-Structured Functional Film on Cellulose Insulation Polymer Surface and Its Effect on Moisture Inhibition and Dielectric Properties

Author:

Liu CongORCID,Hao JianORCID,Li Yanqing,Liao Ruijin

Abstract

After a century of practice, cellulose insulating polymer (insulating paper/pressboard) has been shown to be one of the best and most widely used insulating materials in power transformers. However, with the increased voltage level of the transformer, research has focused on improving the insulation performance of the transformer’s cellulose insulation polymer. Considering the complex environment of the transformer, it is not enough to improve the single performance of the insulating polymer. In this study, a nano-structured ZnO-Al2O3-PTFE (polytetrafluoroethylene) multifunctional film was deposited on the surface of insulating pressboard by radio frequency (RF) magnetron sputtering. The effect of the multilayered ZnO-Al2O3-PTFE functional film on the dielectric and water contact angle of the cellulose insulating polymer was investigated. The scanning electron microscopy/energy dispersive spectrometry (SEM/EDS) showed that the nano-structured ZnO-Al2O3-PTFE functional film was successfully deposited on the cellulose insulation pressboard surface. The functional film presented an obvious stratification phenomenon. By analyzing the result of the contact angle, it was found that the functional film shields the hydroxyl group of the inner cellulose and improves hydrophobicity. The AC breakdown field strength of the treated samples was obviously increased (by 12 to ~17%), which means that the modified samples had a better dielectric insulation performance. This study provides a surface modification method to comprehensively improve electrical properties and the ability to inhibit the moisture of the cellulose insulating polymer, used in a power transformer.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Reference41 articles.

1. Basic Material;Martin,2007

2. Aging condition assessment of transformer oil-immersed cellulosic insulation based upon the average activation energy method

3. Reviews on Oil-Paper Insulation Thermal Aging in Power Transformers;Liao;Trans. China Electrotech. Soc.,2012

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3