Author:
Jiang Wenzhao,Yue Hangbo,Shuttleworth Peter,Xie Pengbo,Li Shanji,Guo Jianwei
Abstract
Microporous organic polymers and related porous materials have been applied in a wide range of practical applications such as adsorption, catalysis, adsorption, and sensing fields. However, some limitations, like wide pore size distribution, may limit their further applications, especially for adsorption. Here, micro- and ultra-microporous frameworks (HBPBA-D and TBBPA-D) were designed and synthesized via Sonogashira–Hagihara coupling of six/eight-arm bromophenyl adamantane-based “knots” and alkynes-type “rod” monomers. The BET surface area and pore size distribution of these frameworks were in the region of 395–488 m2 g−1, 0.9–1.1 and 0.42 nm, respectively. The as-made prepared frameworks also showed good chemical ability and high thermal stability up to 350 °C, and at 800 °C only 30% mass loss was observed. Their adsorption capacities for small gas molecules such as CO2 and CH4 was 8.9–9.0 wt % and 1.43–1.63 wt % at 273 K/1 bar, and for the toxic organic vapors n-hexane and benzene, 104–172 mg g−1 and 144–272 mg g−1 at 298 K/0.8 bar, respectively. These are comparable to many porous polymers with higher BET specific surface areas or after functionalization. These properties make the resulting frameworks efficient absorbent alternatives for small gas or toxic vapor capture, especially in harsh environments.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Guangdong Province
Science and Technology Program of Guangzhou City
Subject
Polymers and Plastics,General Chemistry
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献