Author:
Ding Li,Jia Zhimeng,Sun Hao,Pan Yong,Zhao Jianping
Abstract
An ammonium polyphosphate (APP) surface-modified by silane coupling agent was used as flame retardant in high-impact polystyrene (HIPS). A series of HIPS nanocomposites containing different mass fractions of APP (k-APP) surface-modified by silane coupling agent (3-aminopropyl triethoxysilane, KH 550) and carboxylic-functionalized MWCNTs (COOH–MWCNTs) were prepared by the melt blending method. A composite only containing APP was also prepared as a reference material. Scanning electron microscopy (SEM) was employed to investigate the dispersion of the fillers into the HIPS matrix, and it was found the hydrophobic groups on the k-APP surface would greatly enhance the dispersion and prevent agglomerations compared with APP. Furthermore, the COOH–MWCNTs also showed good dispersibility into the matrix. Mechanical tests of the nanocomposites revealed that k-APP exhibits a more beneficial effect on both tensile and flexural properties compared with APP. Thermogravimetric analysis (TGA) and cone calorimeter tests (CCT) were conducted to probe the thermal and flammability properties of the nanocomposites, respectively. The synergistic effects of k-APP and COOH–MWCNTs on mechanical, thermal and flammability properties were examined as well.
Funder
National Program on Key Basic Research Project of China
Natural Science Fund of the Jiangsu Higher Education Institutions of China
Subject
Polymers and Plastics,General Chemistry
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献