Improved Flame-Retardant and Ceramifiable Properties of EVA Composites by Combination of Ammonium Polyphosphate and Aluminum Hydroxide

Author:

Lou Feipeng,Wu Kai,Wang Quan,Qian Zhongyu,Li Shijuan,Guo WeihongORCID

Abstract

Ceramifiable flame-retardant ethylene-vinyl acetate (EVA) copolymer composites for wire and cable sheathing materials were prepared through melt compounding with ammonium polyphosphate (APP), aluminum hydroxide (ATH) and fluorophlogopite mica as the addition agents. The effects of ammonium polyphosphate, alumina trihydrate, and APP/ATH hybrid on the flame retardant, as well as on the thermal and ceramifiable properties of EVA composites, were investigated. The results demonstrated that the composites with the ratio of APP:ATH = 1:1 displayed the best flame retardancy and the greatest char residues among the various EVA composites. The tensile strength of the composites was 6.8 MPa, and the residue strength sintered at 1000 °C reached 5.2 MPa. The effect of sintering temperature on the ceramifiable properties, microstructures, and crystalline phases of the sintered specimen was subsequently investigated through X-ray diffraction, Fourier transform infrared, and scanning electron microscopy. The XRD and FTIR results demonstrated that the crystal structure of mica was disintegrated, while magnesium orthophosphate (Mg3(PO4)2) was simultaneously produced at an elevated temperature, indicating that the ceramization of EVA composites had occurred. The SEM results demonstrated that a more continuous and compact microstructure was produced with the rise in the sintering temperature. This contributed to the flexural strength improvement of the ceramics.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3