Effects of Various Antifouling Coatings and Fouling on Marine Sonar Performance

Author:

Donnelly Bradley,Bedwell Ian,Dimas Jim,Scardino Andrew,Tang YouhongORCID,Sammut Karl

Abstract

There is a rising imperative to increase the operational availability of maritime vessels by extending the time between full docking cycles. To achieve operational efficacy, maritime vessels must remain clear of biological growth. Such growth can cause significant increases in frictional drag, thereby reducing speed, range and fuel efficiency and decreasing the sensitivity of acoustic sensors. The impact that various stages of fouling have on acoustic equipment is unclear. It is also unclear to what extent antifouling techniques interfere with the transmission of acoustic signals. In this study, to examine this effect, neoprene samples were coated with three antifouling coatings, namely, Intersmooth 7460HS, HempaGuard X7 and Hempasil X3. Other neoprene samples were left uncoated but were imbedded with the biocide, 4,5-dichloro-2-octyl-4-isothiazolin-3-one (DCOIT) during the mixing and curing process. Uncoated nitrile samples that had varying levels of fouling from immersion in Port Phillip Bay, Australia, for 92, 156 and 239 days were also extracted. The acoustic properties of these samples were measured using an acoustic insertion loss test and compared to uncoated neoprene or nitrile to ascertain the acoustic effects of the applications of antifouling coatings as well as the fouling growth itself. A T-peel test was performed on all coated samples in an attempt to understand the adhesive properties of the coatings when applied to neoprene. It was found that the application of antifouling coatings had little effect on the transmission characteristics of the neoprene with approximately 1 dB loss. The embedment of DCOIT, however, has a chance of causing aeration in the neoprene, which can heavily hamper transmission. An assessment of the effect of the fouling growth found that light and medium fouling levels produced little transmission loss, whereas more extreme fouling lead to a 9 dB transmission loss. The adhesion properties of the coatings were investigated but not fully ascertained as tensile yielding occurred before peeling. However, various failure modes are presented and discussed in this study.

Funder

Australian Research Council

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3