Abstract
The development of a nanoparticulate system for the carrier antigen is now an important tool in the vaccination process, since a smaller number of doses is necessary for effective immunization. Thus, in this work a nanoparticulate system using polymers of chitosan and poly (methacrylic acid) (CS–PMAA) to adsorb the Vi antigen of Salmonella Typhi was developed. CS–PMAA nanoparticles with different proportions of chitosan and poly (methacrylic acid) were obtained and reached sizes from 123.9 ± 2.48 to 234.9 ± 2.66 nm, and spherical shapes were seen in transmission microscopy. At pH 7.2, the nanoparticles had a cationic surface charge that contributed to the adsorption of the Vi antigen. Qualitative analyses of the isolated Vi antigen were performed using Fourier-transform infrared spectroscopy, which indicated the presence of all the characteristic bands of the capsular polysaccharide, and nuclear magnetic resonance, which showed signals for the five hydrogens and the N-acetyl and O-acetyl groups which are characteristic of the Vi antigen structure. In the adsorption kinetics study, the Vi capsular antigen, contained in a phosphate buffer solution of pH 7.2, experienced 55% adsorption on the 1–1% (CS–PMAA) nanoparticles. The adsorption kinetics results showed the ability of the nanoparticulate system to adsorb the Vi antigen.
Subject
Polymers and Plastics,General Chemistry
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献