Digital Luminescence Patterning via Inkjet Printing of a Photoacid Catalysed Organic-Inorganic Hybrid Formulation

Author:

Alamán Jorge,López-Valdeolivas María,Alicante Raquel,Peña Jose,Sánchez-Somolinos CarlosORCID

Abstract

Accurate positioning of luminescent materials at the microscale is essential for the further development of diverse application fields including optoelectronics, energy, biotechnology and anti-counterfeiting. In this respect, inkjet printing has recently attracted great interest due to its ability to precisely deposit with high throughput and no contact, functional materials on different types of substrates. Here, we present a novel photoacid catalysed organic-inorganic hybrid luminescent ink. The formulation, containing monomers bearing epoxy and silane functionalities, a photoacid generator and a small percentage of Rhodamine-B, shows good jetting properties and adequate wetting of the deposited droplets on the receiving substrates. Ultraviolet exposure of the deposited material triggers the cationic ring-opening polymerization reaction of the epoxy groups. Concomitantly, if atmospheric water is available, hydrolysis and condensation takes place, overall leading to a luminescent crosslinked hybrid organic-inorganic polymeric material obtained through a simple one-step curing process, without post baking steps. Advantageously, protection of the ink from actinic light delays the hydrolysis and condensation conferring long-term stability to the ink. Digital patterning leads to patterned emissive surfaces and elements with good adhesion to different substrates, mechanical and optical properties for the fabrication of optical and photonic elements and devices.

Funder

European Regional Development Fund

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3