Study on the Changes of Structures and Properties of PAN Fibers during the Cyclic Reaction in Supercritical Carbon Dioxide

Author:

Qiao MengmengORCID,Kong Haijuan,Ding Xiaoma,Hu Zhifeng,Zhang Luwei,Cao Yuanzhi,Yu Muhuo

Abstract

Thermal pre-oxidation of polyacrylonitrile (PAN) fibers is a time-consuming and energy-consuming step in the production of PAN-based carbon fibers. In this paper, the effect of temperature on the structures and properties of PAN fibers cyclized in the supercritical carbon dioxide (Sc-CO2) medium was studied. The thermal behaviors of the PAN fibers were investigated by Fourier transform infrared spectra (FT-IR), X-ray diffraction (XRD), differential scanning calorimeter (DSC) and thermogravimetric analysis (TGA). The cyclization reaction was sensitive to the heating temperature and gas atmosphere. The FT-IR results of the PAN fibers treated in the Sc-CO2 confirmed that the degree of cyclization increased with the increase of the cyclization temperature. Compared with the PAN fibers treated in the air, the PAN fibers treated in the Sc-CO2 showed a higher degree of cyclization even at the same temperature. These findings might be related to the osmotic action of Sc-CO2 causing the fibers to be further arranged in a regular manner, which was favorable for the cyclization reaction. Moreover, as one kind of high diffusion and high heat transfer media, the heat release during the cyclization of PAN fibers could be quickly removed by Sc-CO2, which achieved the progress of the rapid-entry cyclization reaction.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Reference33 articles.

1. History and Structure of Carbon Fibers;Park,2018

2. Carbon Fibers and Their Composites;Park,2015

3. Application of Carbon Fiber Reinforced Composites on Lightweight Design of Articulated Platform

4. Novel Carbon Fibers and Their Composites;Park,2018

5. Carbon fiber and its application in light weighting of automobiles;Peng;China Synth. Fiber Ind.,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3