Author:
Yang Feng,Lan Cuiqin,Zhang Haiming,Guan Jian,Zhang Fan,Fei Benhua,Zhang Jilei
Abstract
Functional fabrics have gained attention as an environmentally-friendly synthesis route. In the current study, novelty bamboo pulp fabrics with thermal conductivity properties were prepared by coating the fabric with graphene and cellulose nanocrystal (G/CNC) solutions. The influences of G and CNC concentrations on properties of fabrics were studied. The viscosities of the G/CNC solutions increased with an increase of G contents. G had an obvious thickening effect. Furthermore, compounded fabrics with different G and CNC contents (GCBPFs) were prepared and extensively characterized in terms of thermal and mechanical properties, and morphology. The ultimate thermal conductivity, bursting strength, and tensile strength of the GCBPF were 0.136 W/m·K, 1.514 MPa, and 25.8 MPa, with 4 wt.% CNC and 3 wt.% G contents, respectively. The results demonstrated that the as-fabricated GCBPFs with favorable thermal conductivity could be applied as a novel fast cooling textile for the clothing industry.
Funder
the Special Scientific Research Fund of Construction of High-level teachers Project of Beijing municipal university
Subject
Polymers and Plastics,General Chemistry
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献