POSS Hybrid Robust Biomass IPN Hydrogels with Temperature Responsiveness

Author:

Chen Yi,Zhou Yueyun,Liu Wenyong,Pi Hejie,Zeng Guangsheng

Abstract

In order to improve the performance of traditional sodium alginate (SA) hydrogels cross-linked by Ca2+ ions to meet greater application demand, a strategy was designed to structure novel SA-based gels (named OP-PN gels) to achieve both stimulus responsiveness and improved mechanical strength. In this strategy, the SA chains are co-cross-linked by CaCl2 and cationic octa-ammonium polyhedral oligomeric silsesquioxane (Oa-POSS) particles as the first network, and an organically cross-linked poly(N-isopropyl acrylamide) (PNIPA) network is introduced into the gels as the second network. Several main results are obtained from the synthesis and characterization of the gels. For OP-PN gels, their properties depend on the content of both uniformly dispersed Oa-POSS and PNIPA network directly. The increased Oa-POSS and PNIPA network content significantly improves both the strength and resilience of gels. Relatively, the increased Oa-POSS is greatly beneficial to the modulus of gels, and the increased PNIPA network is more favorable to advancing the tensile deformation of gels. The gels with hydrophilic PNIPA network exhibit better swelling ability and remarkable temperature responsiveness, and their volume phase transition temperature can be adjusted by altering the content of Oa-POSS. The deswelling rate of gels increases gradually with the increase of POSS content due to the hydrophobic Si–O skeleton of POSS. Moreover, the enhanced drug loading and sustained release ability of the target drug bovine serum albumin displays great potential for this hybrid gel in the biomedical field.

Funder

Hunan Province Funds for Distinguished Young Scientists

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3