Author:
Wei Qinghua,Wang Yanen,Rao Yiwen,Jiang Anguo,Zhang Kun,Lu Tingli,Chen Xiongbiao
Abstract
Due to the superior performances of nanosilica particles, this research has been designed to study their effects on the mechanical and trigological properties of a PVA/PAM polymer composite by a molecular dynamics simulation method. To realize the research objectives mentioned above, the molecular models of amorphous cells and sandwiched friction models for pure polyvinyl alcohol (PVA)/polyacrylamide (PAM) (component weight ratio is 1:1) and PVA/PAM/nanosilica (component weight ratio is 5.75:5.75:1) polymer composites were constructed and simulated, respectively. The simulation results of the mechanical properties show increases about 31.6% in the bulk modulus, 53.1% in the shear modulus, and 50.1% in the Young’s modulus by incorporating a nanosilica particle into a pure PVA/PAM polymer composite. Meanwhile, the changes in Cauchy pressure, B/G ratio, and Poisson’s ratio values indicate that incorporating a nanosilica particle into pure PVA/PAM weakened the ductility of the composite. Incorporating a nanosilica particle into a pure PVA/PAM composite also showed a decrease about 28.2% in the abrasion rates and relative concentration distributions of polymer molecules in the final friction models. Additionally, the binding energy and the pair correlation functions between a nanosilica particle and the polymer chains in a cubic cell demonstrate that incorporating nanosilica into PVA/PAM polymer composites improves the internal binding strength between different components through the forming hydrogen bonds. As a result, the mechanical and tribological properties of PVA/PAM polymer composites can be enhanced by incorporating nanosilica particles.
Funder
China Scholarship Council
National Natural Science Foundation of China
Fundamental Research Funds for the Central Universities
Natural Sciences and Engineering Research Council of Canada
Subject
Polymers and Plastics,General Chemistry
Cited by
27 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献