A Hypericin Delivery System Based on Polydopamine Coated Cerium Oxide Nanorods for Targeted Photodynamic Therapy

Author:

Wang Yang,Zhang Yu,Jin Ming,Lv Yinghua,Pei Zhichao,Pei Yuxin

Abstract

Photodynamic therapy (PDT) as a non-aggressive therapy with fewer side effects has unique advantages over traditional treatments. However, PDT still has certain limitations in clinical applications, mainly because most photosensitizers utilized in PDT are hydrophobic compounds, which will self-aggregate in the aqueous phase and cause undesirable effects. In order to resolve this, we utilized the self-polymerization of dopamine molecules under alkaline conditions to coat cerium oxide nanorods (CeONR) with a dense polydopamine (PDA) film. Thereafter, thiolated galactose (Gal-SH) and hypericin (Hyp) were modified and loaded onto the surface to construct CeONR@PDA-Gal/Hyp, respectively, which can be used for targeted photodynamic therapy of human hepatoma HepG2 cells. CeONR@PDA-Gal/Hyp was characterized by transmission electron microscope (TEM), Zeta potential, Ultraviolet-visible (UV-Vis), and fluorescence spectroscopy, respectively. This hypericin delivery system possesses good biocompatibility and specific targeting ability, where the galactose units on the surface of CeONR@PDA-Gal/Hyp can specifically recognize the asialo-glycoprotein receptors (ASGP-R), which overexpress on HepG2 cell membrane. Furthermore, Hyp will detach from the surface of CeONR@PDA-Gal/Hyp after the nanorods enter cancer cells, and shows excellent PDT effect under the irradiation of light with a wavelength of 590 nm. Our work exemplifies a novel targeted delivery of hydrophobic photosensitizers for cancer treatment.

Funder

National Natural Science Foundation of China

Project of Science and Technology of Social Development in Yangling Demonstration Zone

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3