Author:
Yu Sizhu,Li Xiaodong,Guo Xiaoyan,Li Zhiren,Zou Meishuai
Abstract
Buoyancy material is a type of low-density and high-strength composite material which can provide sufficient buoyancy with deep submersibles. A new buoyancy material with N,N,N′,N′-tetraepoxypropyl-4,4′-diaminodiphenylmethane epoxy resin (AG-80) and m-xylylenediamine (m-XDA) curing agent as matrix and hollow glass microsphere (HGM) as the filler is prepared. The temperature and time of the curing process were determined by the calculations of thermal analysis kinetics (TAK) through differential scanning calorimetry (DSC) analysis. The results show that the better mass ratio of AG-80 with m-XDA is 100/26. Combined TAK calculations and experimental results lead to the following curing process: pre-curing at 75 °C for 2 h, curing at 90 °C for 2 h, and post-curing at 100 °C for 2 h. The bulk density, compressive strength, and saturated water absorption of AG-80 epoxy resin-based buoyancy material were 0.729 g/cm3, 108.78 MPa, and 1.23%, respectively. Moreover, this type of buoyancy material can resist the temperature of 250 °C.
Subject
Polymers and Plastics,General Chemistry
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献