Biodegradable Poly(acrylic acid-co-acrylamide)/Poly(vinyl alcohol) Double Network Hydrogels with Tunable Mechanics and High Self-healing Performance

Author:

Jing ZhanxinORCID,Xu Aixing,Liang Yan-Qiu,Zhang Zhaoxia,Yu Chuanming,Hong Pengzhi,Li Yong

Abstract

We proposed a novel strategy in the fabrication of biodegradable poly(acrylic acid-co-acrylamide)/poly(vinyl alcohol) (P(AAc-co-Am)/PVA) double network (DN) hydrogels with good mechanical and self-healing properties. In the DN hydrogel system, P(AAc-co-Am) polymers form a network through the ionic coordinates between –COO– and Fe3+ and hydrogen bonding between –COOH and –CONH2, while another network is fabricated by the complexation between PVA and borax. The influences of the composition on the rheological behaviors and mechanical properties of the synthesized DN hydrogels were investigated. The rheological measurements revealed that the viscoelasticity and stiffness of the P(AAc-co-Am)/PVA DN hydrogels increase as the acrylamide and Fe3+ concentrations increase. At 0.05 mmol of Fe3+ and 50% of acrylamide, tensile strength and elongation at break of P(AAc-co-Am)/PVA DN hydrogels could reach 329.5 KPa and 12.9 mm/mm, respectively. These properties arise from the dynamic reversible bonds existed in the P(AAc-co-Am)/PVA DN hydrogels. These reversible bonds also give good self-healing properties, and the maximum self-healing efficiency of P(AAc-co-Am)/PVA DN hydrogels is up to 96.4%. The degradation test of synthesized DN hydrogels was also conducted under simulated physiological conditions and the weight loss could reach 74% in the simulated intestinal fluid. According to the results presented here, the synthesized P(AAc-co-Am)/PVA DN hydrogels have a potential application prospect in various biomedical fields.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 52 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3