The Improvement Effect and Mechanism of Longitudinal Ultrasonic Vibration on the Injection Molding Quality of a Polymeric Micro-Needle Array

Author:

Gao ShanORCID,Qiu Zhongjun,Ouyang Junhao

Abstract

A polymeric micro-needle array with high quality has been fabricated using a longitudinal ultrasonic-assisted micro-injection molding (LUμIM) method. To realize the practicability and stability in actual industrial processing, this paper is aimed at studying the improvement mechanism of ultrasonic vibration on the molding quality. The melt-filling process in the micro-needle array cavity is simulated, and the improvement effect of ultrasonic vibration is discussed. The enhancement effect of ultrasonic vibration on material properties of polypropylene and polymethylmethacrylate parts are experimentally investigated. The results show that in the manufacturing of the micro-needle array part using LUμIM, the mold-filling quality is improved by the enhanced melt filling capability and pressure compensation effect, which are caused by the increased corner viscosity gradient, reduced the filling time and melt viscosity under ultrasonic vibration. Material properties of both the semi-crystalline polymer and amorphous polymer could be enhanced by the transformation of micromorphology. It is proved that for a semi-crystalline polymer, this novel method could be employed as a material properties enhancement method, and an optimal excitation voltage of ultrasonic vibration is obtained to achieve the best material properties.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3