High-Level Conversion of l-lysine into Cadaverine by Escherichia coli Whole Cell Biocatalyst Expressing Hafnia alvei l-lysine Decarboxylase

Author:

Kim ,Baritugo ,Oh ,Kang ,Jung ,Jang ,Song ,Kim ,Lee ,Hwang ,Park ,Park ,Joo

Abstract

Cadaverine is a C5 diamine monomer used for the production of bio-based polyamide 510. Cadaverine is produced by the decarboxylation of l-lysine using a lysine decarboxylase (LDC). In this study, we developed recombinant Escherichia coli strains for the expression of LDC from Hafnia alvei. The resulting recombinant XBHaLDC strain was used as a whole cell biocatalyst for the high-level bioconversion of l-lysine into cadaverine without the supplementation of isopropyl β-d-1-thiogalactopyranoside (IPTG) for the induction of protein expression and pyridoxal phosphate (PLP), a key cofactor for an LDC reaction. The comparison of results from enzyme characterization of E. coli and H. alvei LDC revealed that H. alvei LDC exhibited greater bioconversion ability than E. coli LDC due to higher levels of protein expression in all cellular fractions and a higher specific activity at 37 °C (1825 U/mg protein > 1003 U/mg protein). The recombinant XBHaLDC and XBEcLDC strains were constructed for the high-level production of cadaverine. Recombinant XBHaLDC produced a 1.3-fold higher titer of cadaverine (6.1 g/L) than the XBEcLDC strain (4.8 g/L) from 10 g/L of l-lysine. Furthermore, XBHaLDC, concentrated to an optical density (OD600) of 50, efficiently produced 136 g/L of cadaverine from 200 g/L of l-lysine (97% molar yield) via an IPTG- and PLP-free whole cell bioconversion reaction. Cadaverine synthesized via a whole cell biocatalyst reaction using XBHaLDC was purified to polymer grade, and purified cadaverine was successfully used for the synthesis of polyamide 510. In conclusion, an IPTG- and PLP-free whole cell bioconversion process of l-lysine into cadaverine, using recombinant XBHaLDC, was successfully utilized for the production of bio-based polyamide 510, which has physical and thermal properties similar to polyamide 510 synthesized from chemical-grade cadaverine.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3