Research on the Relationship between Stall Propagation and Flange Leakage of Mixed-Flow Pumps

Author:

Lu Dele,Li WeiORCID,Li Shuo,Ji LeileiORCID,Yang Yi

Abstract

In order to explore the internal relationship between stall core propagation and flange leakage flow in the rotating stall of a mixed-flow pump, based on the k-ε turbulence model, a SIMPLEC algorithm and hexahedral structured grid are used to simulate the internal flow field of the mixed-flow pump. By setting the flange clearance as 0.2 mm, 0.5 mm and 0.8 mm, the propagation characteristics of the rotating stall and the unsteady characteristics of flange leakage flow of the mixed-flow pump under the condition of near stall are studied, and the influence of the flange clearance on the pressure fluctuation characteristics of the mixed-flow pump under the condition of near stall is analyzed. The results show that the stall core is located at the outlet of the impeller and propagates from the leading edge of the adjacent blade along the opposite direction of blade rotation to the next flow channel. The pressure gradient in the stall channel and the energy loss are large. When the flange clearance is 0.5 mm and 0.8 mm, the stall core changes from one to two, and the propagation mechanism of the stall core tends to be complex in the two adjacent flow channels. When the flange clearance is 0.8 mm, the propagation period decreases. The variation law of leakage flow is consistent with the propagation law of stall core. When the flow passage changes from stall state to non-stall state, the leakage flow also changes from one state to another, so the leakage flow can be used as a form of apparent stall. Under the condition of near stall, the pressure fluctuation curve of the adjacent monitoring points has a large phase difference consistent with the propagation period of the stall core, and has a strong pressure drop. When the flange clearance is 0.5 mm and 0.8 mm, the time domain curve of pressure fluctuation has two wave troughs in one cycle. In the near stall condition, the main frequency of the pressure fluctuation at the monitoring point is the stall frequency, and the amplitude of the main frequency at the middle of the outlet is the largest. The characteristics of flange leakage flow and pressure fluctuation can better reflect the flow situation in the pump when rotating stall occurs. The research results can provide a basis for judging whether stall occurs in the flow passage of the pump.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Internal flow stability analysis of vertical mixed-flow pump device based on EGT and FFT;Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering;2024-08-28

2. Test and Numerical Simulation of Pressure Pulsation under the Forward and Reverse Working Conditions of a Horizontal Axial Flow Pump;Applied Sciences;2022-12-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3