Transcriptome-Based Identification of the Optimal Reference Genes for Quantitative Real-Time Polymerase Chain Reaction Analyses of Lingonberry Fruits throughout the Growth Cycle

Author:

Zhang Wanchen12ORCID,Xu Jian1,Wang Qiang3,Li Jing3,Li Yadong1,Dong Mei1ORCID,Sun Haiyue1ORCID

Affiliation:

1. Joint International Research Laboratory of Modern Agricultural Technology, College of Horticulture, Jilin Agricultural University, Changchun 130118, China

2. College of Life Science, Jilin Agricultural University, Changchun 130118, China

3. Research Institute of Pomology of CAAS, Xingcheng 125100, China

Abstract

(1) Background: Vaccinium vitis-idaea is a nutritionally and economically valuable natural wild plant species that produces berries useful for treating various diseases. There is growing interest in lingonberry, but there is limited information regarding lingonberry reference genes suitable for gene expression analyses of different tissues under various abiotic stress conditions. The objective of this study was to identify stable reference genes suitable for different lingonberry tissues in response to abiotic stress. (2) Methods: The delta Ct method and the GeNorm v3.5 and NormFinder v20 programs were used to comprehensively analyze gene expression stability. (3) Results: Actin Unigene23839 was the best reference gene for analyzing different cultivars, whereas Actin CL5740.Contig2 was the most suitable reference gene for analyzing different tissues and alkali stress. In contrast, 18S rRNA CL5051.Contig1 was the most stable reference gene under drought conditions. (4) Conclusions: These suitable reference genes may be used in future qRT-PCR analyses of different lingonberry tissues and the effects of abiotic stresses. Furthermore, the study data may be useful for functional genomics studies and the molecular breeding of lingonberry. In summary, internal reference genes or internal reference gene combinations should be carefully selected according to the experimental conditions to ensure that the generated gene expression data are accurate.

Funder

Jilin Province Science and Technology Department

Jilin Province Development and Reform Commission

Department of Education of Jilin Province

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3