Distinguishing the Effects of Stress Intensity and Stress Duration in Plant Responses to Salinity

Author:

DiCara Caitlin1,Gedan Keryn1ORCID

Affiliation:

1. Department of Biological Sciences, Columbian College of Arts & Sciences, The George Washington University, Washington, DC 20052, USA

Abstract

Species-specific variation in response to stress is a key driver of ecological patterns. As climate change alters stress regimes, coastal plants are experiencing intensifying salinity stress due to sea-level rise and more intense storms. This study investigates the variation in species’ responses to presses and pulses of salinity stress in five glycophytic and five halophytic species to determine whether salinity intensity, duration, or their interaction best explain patterns of survival and performance. In salinity stress exposure experiments, we manipulated the intensity and duration of salinity exposure to challenge species’ expected salinity tolerances. Salinity intensity best explained patterns of survival in glycophytic species, while the interaction between intensity and duration was a better predictor of survival in halophytic species. The interaction between intensity and duration also best explained biomass and chlorophyll production for all tested species. There was interspecific variability in the magnitude of the interactive effect of salinity intensity and duration, with some glycophytic species (Persicaria maculosa, Sorghum bicolor, and Glycine max) having a more pronounced, negative biomass response. For the majority of species, prolonged stress duration exacerbated the negative effect of salinity intensity on biomass. We also observed an unexpected, compensatory response in chlorophyll production in two species, Phragmites australis and Kosteletzkya virginica, for which the effect of salinity intensity on chlorophyll became more positive with increasing duration. We found the regression coefficient of salinity intensity versus biomass at the highest stress duration, i.e., as a press stressor, to be a useful indicator of salinity tolerance, for which species’ salinity-tolerance levels matched those in the literature. In conclusion, by measuring species-specific responses to stress exposure, we were able to visualize the independent and interactive effects of two components of a salinity stress regime, intensity, and duration, to reveal how species’ responses vary in magnitude and by tolerance class.

Funder

U.S. Environmental Protection Agency

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3