Gamma-Aminobutyric Acid Enhances Cadmium Phytoextraction by Coreopsis grandiflora by Remodeling the Rhizospheric Environment

Author:

Huang Yingqi123,Li Boqun4,Chen Huafang13,Li Jingxian13,Xu Jianchu13ORCID,Li Xiong13ORCID

Affiliation:

1. Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China

2. University of Chinese Academy of Sciences, Beijing 100049, China

3. Honghe Center for Mountain Futures, Kunming Institute of Botany, Chinese Academy of Sciences, Honghe 654400, China

4. Science and Technology Information Center, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China

Abstract

Gamma-aminobutyric acid (GABA) significantly affects plant responses to heavy metals in hydroponics or culture media, but its corresponding effects in plant–soil systems remain unknown. In this study, different GABA dosages (0–8 g kg−1) were added to the rhizosphere of Coreopsis grandiflora grown in Cd-contaminated soils. Cd accumulation in the shoots of C. grandiflora was enhanced by 38.9–159.5% by GABA in a dose-dependent approach because of accelerated Cd absorption and transport. The increase in exchangeable Cd transformed from Fe-Mn oxide and carbonate-bound Cd, which may be mainly driven by decreased soil pH rather than GABA itself, could be a determining factor responsible for this phenomenon. The N, P, and K availability was affected by multiple factors under GABA treatment, which may regulate Cd accommodation and accumulation in C. grandiflora. The rhizospheric environment dynamics remodeled the bacterial community composition, resulting in a decline in overall bacterial diversity and richness. However, several important plant growth-promoting rhizobacteria, especially Pseudomonas and Sphingomonas, were recruited under GABA treatment to assist Cd phytoextraction in C. grandiflora. This study reveals that GABA as a soil amendment remodels the rhizospheric environment (e.g., soil pH and rhizobacteria) to enhance Cd phytoextraction in plant–soil systems.

Funder

Special Project for Basic Research of the Yunnan Province

Youth Innovation Promotion Association of the Chinese Academy of Sciences

Honghe Agroforestry Ecological Research Station of Yunnan Province

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3