Quantification of Glucose Metabolism and Nitrogen Utilization in Two Brassicaceae Species under Bicarbonate and Variable Ammonium Soil Conditions

Author:

Xia Antong12,Wu Yanyou2ORCID,Xiang Jiqian1,Yin Hongqing1,Ming Jiajia1,Qin Zhanghui1

Affiliation:

1. Enshi Tujia & Miao Autonomous Prefecture Academy of Agricultural Sciences, Enshi 445000, China

2. State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China

Abstract

In karst habitats under drought conditions, high bicarbonate (high pH), and an abundant nitrate soil environment, bicarbonate regulates the glycolysis (EMP) and pentose phosphate pathways (PPP), which distribute ATP and NADPH, affecting nitrate (NO3−) and ammonium (NH4+) utilization in plants. However, the relationship between EMP PPP and NO3−, and NH4+ utilization and their responses to bicarbonate and variable ammonium still remains elusive. In this study, we used Brassica napus (Bn, a non-karst-adaptable plant) and Orychophragmus violaceus (Ov, a karst-adaptable plant) as plant materials, employed a bidirectional nitrogen-isotope-tracing method, and performed the quantification of the contribution of EMP and PPP. We found that bicarbonate and ammonium inhibited glucose metabolism and nitrogen utilization in Bn under simulated karst habitats. On the other hand, it resulted in a shift from EMP to PPP to promote ammonium utilization in Ov under high ammonium stress in karst habitats. Compared with Bn, bicarbonate promoted glucose metabolism and nitrogen utilization in Ov at low ammonium levels, leading to an increase in photosynthesis, the PPP, carbon and nitrogen metabolizing enzyme activities, nitrate/ammonium utilization, and total inorganic nitrogen assimilation capacity. Moreover, bicarbonate significantly reduced the growth inhibition of Ov by high ammonium, resulting in an improved PPP, RCRUBP, and ammonium utilization to maintain growth. Quantifying the relationships between EMP, PPP, NO3−, and NH4+ utilization can aid the accurate analysis of carbon and nitrogen use efficiency changes in plant species. Therefore, it provides a new prospect to optimize the nitrate/ammonium utilization in plants and further reveals the differential responses of inorganic carbon and nitrogen (C-N) metabolism to bicarbonate and variable ammonium in karst habitats.

Funder

Support Plan Projects of Science and Technology of Guizhou Province

Key Research and Development Project of Hubei Province

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3