Growth and Primary Metabolism of Lettuce Seedlings (Lactuca sativa L.) Are Promoted by an Innovative Iron-Based Fenton-Composted Amendment

Author:

Piro Amalia1ORCID,Oliva Daniela1,Nisticò Dante Matteo1,Lania Ilaria2,Basile Maria Rita2,Chidichimo Giuseppe2,Mazzuca Silvia1

Affiliation:

1. Laboratory of Plant Biology and Plant Proteomics (Lab.Bio.Pro.Ve.), Department of Chemistry and Chemical Technologies, Università della Calabria, 87036 Rende, Italy

2. Physical Chemistry (CFINABEC) Laboratory, Department of Chemistry and Chemical Technologies, Università della Calabria, 87036 Rende, Italy

Abstract

Information regarding the physiological and molecular plant responses to the treatment with new biofertilizers is limited. In this study, a fast-composting soil amendment obtained from solid waste by means of a Fenton reaction was assessed to evaluate the effects on the growth of Lactuca sativa L. var. longifolia seedlings. Growth rate, root biomass, chlorophyll concentration, and total soluble proteins of seedlings treated with the 2% fast-composting soil amendment showed significant increases in comparison with the control seedlings. Proteomic analysis revealed that the soil amendment induced the up-regulation of proteins belonging to photosynthesis machinery, carbohydrate metabolism, and promoted energy metabolism. Root proteomics indicated that the fast-composting soil amendment strongly induced the organs morphogenesis and development; root cap development, lateral root formation, and post-embryonic root morphogenesis were the main biological processes enriched by the treatment. Overall, our data suggest that the addition of the fast-composting soil amendment formulation to the base soils might ameliorate plant growth by inducing carbohydrate primary metabolism and the differentiation of a robust root system.

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3