Ethylene Inhibition Reduces De Novo Shoot Organogenesis and Subsequent Plant Development from Leaf Explants of Solanum betaceum Cav.

Author:

Neves Mariana1ORCID,Correia Sandra12ORCID,Canhoto Jorge1ORCID

Affiliation:

1. Centre for Functional Ecology, TERRA Associate Laboratory, Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal

2. InnovPlantProtect CoLab, 7350-478 Elvas, Portugal

Abstract

In de novo shoot organogenesis (DNSO) plant cells develop into new shoots, without the need of an existing meristem. Generally, this process is triggered by wounding and specific growth regulators, such as auxins and cytokinins. Despite the potential significance of the plant hormone ethylene in DNSO, its effect in regeneration processes of woody species has not been thoroughly investigated. To address this gap, Solanum betaceum Cav. was used as an experimental model to explore the role of this hormone on DNSO and potentially extend the findings to other woody species. In this work it was shown that ethylene positively regulates DNSO from tamarillo leaf explants. Ethylene precursors ACC and ethephon stimulated shoot regeneration by increasing the number of buds and shoots regenerated. In contrast, the inhibition of ethylene biosynthesis or perception by AVG and AgNO3 decreased shoot regeneration. Organogenic callus induced in the presence of ethylene precursors showed an upregulated expression of the auxin efflux carrier gene PIN1, suggesting that ethylene may enhance shoot regeneration by affecting auxin distribution prior to shoot development. Additionally, it was found that the de novo shoot meristems induced in explants in which ethylene biosynthesis and perception was suppressed were unable to further develop into elongated shoots. Overall, these results imply that altering ethylene levels and perception could enhance shoot regeneration efficiency in tamarillo. Moreover, we offer insights into the possible molecular mechanisms involved in ethylene-induced shoot regeneration.

Funder

R&D Unit Centre for Functional Ecology—Science for People and the Planet

FCT/MCTES through national funds

P2020|COMPETE

European Regional Development Fund

Portuguese national funds

Foundation for Science and Technology

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3