Increasing Planting Density and Reducing N Application Improves Yield and Grain Filling at Two Sowing Dates in Double-Cropping Rice Systems

Author:

Zhou Wentao1,Yan Lingling2,Fu Zhiqiang1,Guo Huijuan1,Zhang Wei1,Liu Wen1,Ye Yumeng1,Long Pan1

Affiliation:

1. Key Laboratory of Crop Physiology and Molecular Biology Ministry of Education, College of Agronomy, Hunan Agricultural University, Changsha 410128, China

2. Yiyang Academy of Agricultural Sciences, Yiyang 413499, China

Abstract

Grain filling plays an important role in achieving high grain yield. Manipulating planting densities is recognized as a viable approach to compensate for the reduced yield caused by nitrogen reduction. Understanding the effects of nitrogen fertilization and planting density on superior and inferior grain filling is crucial to ensure grain security. Hence, double-cropping paddy field trials were conducted to investigate the effect of three nitrogen levels (N1, conventional nitrogen application; N2, 10% nitrogen reduction; N3, 20% nitrogen reduction) and three planting densities (D1, conventional planting density; D2, 20% density increase; D3, 40% density increase) on grain yield, yield formation, and grain-filling characteristics at two sowing dates (S1, a conventional sowing date, and S2, a date postponed by ten days) in 2019–2020. The results revealed that the annual yield of S1 was 8.5–14% higher than that of S2. Reducing nitrogen from N2 to N3 decreased the annual yield by 2.8–7.6%, but increasing planting densities from D1 to D3 significantly improved yield, by 6.2–19.4%. Furthermore, N2D3 had the highest yield, which was 8.7–23.8% higher than the plants that had received the other treatments. The rice yield increase was attributed to higher numbers of panicles per m2 and spikelets per panicle on the primary branches, influenced by superior grain filling. Increasing planting density and reducing nitrogen application significantly affected grain-filling weight, with the 40% density increase significantly facilitating superior and inferior grain filling with the same nitrogen level. Increasing density can improve superior grains while reducing nitrogen will decrease superior grains. These results suggest that N2D3 is an optimal strategy to increase yield and grain filling for double-cropping rice grown under two sowing-date conditions.

Funder

National key research and development program of China

Education Department of Hunan Province of China

Natural Science Foundation of Hunan Province

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3