Induced Systemic Resistance in the Bacillus spp.—Capsicum chinense Jacq.—PepGMV Interaction, Elicited by Defense-Related Gene Expression

Author:

Samaniego-Gámez Blancka Yesenia1ORCID,Valle-Gough Raúl Enrique1ORCID,Garruña-Hernández René2ORCID,Reyes-Ramírez Arturo3,Latournerie-Moreno Luis3ORCID,Tun-Suárez José María3ORCID,Villanueva-Alonzo Hernán de Jesús4ORCID,Nuñez-Ramírez Fidel1ORCID,Diaz Lourdes Cervantes1,Samaniego-Gámez Samuel Uriel1ORCID,Minero-García Yereni5,Hernandez-Zepeda Cecilia6,Moreno-Valenzuela Oscar A.5

Affiliation:

1. Institute of Agricultural Sciences, Autonomous University of Baja California, Delta Highway s/n Ejido Nuevo León, Mexicali P.O. Box 21705, Baja California, Mexico

2. CONACYT—National Technological Institute of Mexico, Technological Institute of Conkal, CONACYT, Tecnológico Ave. s/n, Conkal P.O. Box 97345, Yucatán, Mexico

3. National Technological Institute of Mexico, Conkal Institute of Technology, Division of Graduate Studies and Research, Av. Tecnológico s/n, Conkal P.O. Box 97345, Yucatán, Mexico

4. Regional Research Center “Dr. Hideyo Noguchi”, Cell Biology Laboratory, Autonomous University of Yucatan, Av. Itzáez, Nmbr. 490 by 59 St. Centro, Merida P.O. Box 97000, Yucatán, Mexico

5. Yucatan Center of Scientific Research, Plant Biochemistry and Molecular Biology Unit, 43 St., Nmbr. 130, Chuburna de Hidalgo, Merida P.O. Box 97200, Yucatán, Mexico

6. Yucatan Center of Scientific Research, Water Sciences Unit, 8 St., Nmbr. 39, SM 64, Mz. 29, Cancun P.O. Box 77500, Quintana Roo, Mexico

Abstract

Induced systemic resistance (ISR) is a mechanism involved in the plant defense response against pathogens. Certain members of the Bacillus genus are able to promote the ISR by maintaining a healthy photosynthetic apparatus, which prepares the plant for future stress situations. The goal of the present study was to analyze the effect of the inoculation of Bacillus on the expression of genes involved in plant responses to pathogens, as a part of the ISR, during the interaction of Capsicum chinense infected with PepGMV. The effects of the inoculation of the Bacillus strains in pepper plants infected with PepGMV were evaluated by observing the accumulation of viral DNA and the visible symptoms of pepper plants during a time-course experiment in greenhouse and in in vitro experiments. The relative expression of the defense genes CcNPR1, CcPR10, and CcCOI1 were also evaluated. The results showed that the plants inoculated with Bacillus subtilis K47, Bacillus cereus K46, and Bacillus sp. M9 had a reduction in the PepGMV viral titer, and the symptoms in these plants were less severe compared to the plants infected with PepGMV and non-inoculated with Bacillus. Additionally, an increase in the transcript levels of CcNPR1, CcPR10, and CcCOI1 was observed in plants inoculated with Bacillus strains. Our results suggest that the inoculation of Bacillus strains interferes with the viral replication, through the increase in the transcription of pathogenesis-related genes, which is reflected in a lowered plant symptomatology and an improved yield in the greenhouse, regardless of PepGMV infection status.

Funder

Mexico National Council of Science and Technology

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3