Development of SNP Markers for Original Analysis and Germplasm Identification in Camellia sinensis

Author:

Wang Liubin,Xun Hanshuo,Aktar Shirin,Zhang Rui,Wu Liyun,Ni Dejiang,Wei KangORCID,Wang Liyuan

Abstract

Tea plants are widely grown all over the world because they are an important economic crop. The purity and authenticity of tea varieties are frequent problems in the conservation and promotion of germplasm resources in recent years, which has brought considerable inconvenience and uncertainty to the selection of parental lines for breeding and the research and cultivation of superior varieties. However, the development of core SNP markers can quickly and accurately identify the germplasm, which plays an important role in germplasm identification and the genetic relationship analysis of tea plants. In this study, based on 179,970 SNP loci from the whole genome of the tea plant, all of 142 cultivars were clearly divided into three groups: Assam type (CSA), Chinese type (CSS), and transitional type. Most CSA cultivars are from Yunnan Province, which confirms that Yunnan Province is the primary center of CSA origin and domestication. Most CSS cultivars are distributed in east China; therefore, we deduced that east China (mainly Zhejiang and Fujian provinces) is most likely the area of origin and domestication of CSS. Moreover, 45 core markers were screened using strict criteria to 179,970 SNP loci, and we analyzed 117 well-Known tea cultivars in China with 45 core SNP markers. The results were as follows: (1) In total, 117 tea cultivars were distinguished by eight markers, which were selected to construct the DNA fingerprint, and the remaining markers were used as standby markers for germplasm identification. (2) Ten pairs of parent and offspring relationships were confirmed or identified, and among them, seven pairs were well-established pedigree relationships; the other three pairs were newly identified. In this study, the east of China (mainly Zhejiang and Fujian provinces) is most likely the area of origin and domestication of CSS. The 45 core SNP markers were developed, which provide a scientific basis at the molecular level to identify the superior tea germplasm, undertake genetic relationship analysis, and benefit subsequent breeding work.

Funder

Zhejiang Science and Technology Major Program on Agricultural New Variety Breeding-Tea Plant

China Agriculture Research System of MOF and MARA

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

Reference43 articles.

1. The anti-obesity effects of green tea in human intervention and basic molecular studies;Huang;Eur. J. Clin. Nutr.,2014

2. Oolong tea: A critical review of processing methods, chemical composition, health effects, and risk;Ng;Crit. Rev. Food Sci. Nutr.,2018

3. Green tea intake and risk of incident kidney stones: Prospective cohort studies in middle-aged and elderly Chinese individuals;Shu;Int. J. Urol.,2019

4. The growth of tea;Drew;Nature,2019

5. Tea Plant (Camellia Sinensis) Breeding Mechanisms Role in Genetic Improvement and Production of Major Producing Countries;Shehasen;Int. J. Res. Stud. Sci. Eng. Technol.,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3