Abstract
Tea plants are widely grown all over the world because they are an important economic crop. The purity and authenticity of tea varieties are frequent problems in the conservation and promotion of germplasm resources in recent years, which has brought considerable inconvenience and uncertainty to the selection of parental lines for breeding and the research and cultivation of superior varieties. However, the development of core SNP markers can quickly and accurately identify the germplasm, which plays an important role in germplasm identification and the genetic relationship analysis of tea plants. In this study, based on 179,970 SNP loci from the whole genome of the tea plant, all of 142 cultivars were clearly divided into three groups: Assam type (CSA), Chinese type (CSS), and transitional type. Most CSA cultivars are from Yunnan Province, which confirms that Yunnan Province is the primary center of CSA origin and domestication. Most CSS cultivars are distributed in east China; therefore, we deduced that east China (mainly Zhejiang and Fujian provinces) is most likely the area of origin and domestication of CSS. Moreover, 45 core markers were screened using strict criteria to 179,970 SNP loci, and we analyzed 117 well-Known tea cultivars in China with 45 core SNP markers. The results were as follows: (1) In total, 117 tea cultivars were distinguished by eight markers, which were selected to construct the DNA fingerprint, and the remaining markers were used as standby markers for germplasm identification. (2) Ten pairs of parent and offspring relationships were confirmed or identified, and among them, seven pairs were well-established pedigree relationships; the other three pairs were newly identified. In this study, the east of China (mainly Zhejiang and Fujian provinces) is most likely the area of origin and domestication of CSS. The 45 core SNP markers were developed, which provide a scientific basis at the molecular level to identify the superior tea germplasm, undertake genetic relationship analysis, and benefit subsequent breeding work.
Funder
Zhejiang Science and Technology Major Program on Agricultural New Variety Breeding-Tea Plant
China Agriculture Research System of MOF and MARA
Subject
Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献