PhCHS5 and PhF3′5′H Genes Over-Expression in Petunia (Petunia hybrida) and Phalaenopsis (Phalaenopsis aphrodite) Regulate Flower Color and Branch Number

Author:

Lou Yuxia12,Zhang Qiyu12,Xu Qingyu12,Yu Xinyu12,Wang Wenxin12,Gai Ruonan12,Ming Feng12

Affiliation:

1. Development Centre of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China

2. Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China

Abstract

Flower breeders are continually refining their methods for producing high-quality flowers. Phalaenopsis species are considered the most important commercially grown orchids. Advances in genetic engineering technology have provided researchers with new tools that can be used along with traditional breeding methods to enhance floral traits and quality. However, the application of molecular techniques for the breeding of new Phalaenopsis species has been relatively rare. In this study, we constructed recombinant plasmids carrying flower color-related genes, Phalaenopsis Chalcone synthase (PhCHS5) and/or Flavonoid 3′,5′-hydroxylase (PhF3′5′H). These genes were transformed into both Petunia and Phalaenopsis plants using a gene gun or an Agrobacterium tumefaciens-based method. Compared with WT, 35S::PhCHS5 and 35S::PhF3′5′H both had deeper color and higher anthocyanin content in Petunia plants. Additionally, a phenotypic comparison with wild-type controls indicated the PhCHS5 or PhF3′5′H-transgenic Phalaenopsis produced more branches, petals, and labial petals. Moreover, PhCHS5 or PhF3′5′H-transgenic Phalaenopsis both showed deepened lip color, compared with the control. However, the intensity of the coloration of the Phalaenopsis lips decreased when protocorms were co-transformed with both PhCHS5 and PhF3′5′H. The results of this study confirm that PhCHS5 and PhF3′5′H affect flower color in Phalaenopsis and may be relevant for the breeding of new orchid varieties with desirable flowering traits.

Funder

National Key R&D Program of China

Science and Technology Commission of Shanghai Municipality

Shanghai Engineering Research Center of Plant Germplasm Resources

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3