Smart Farming Enhances Bioactive Compounds Content of Panax ginseng on Moderating Scopolamine-Induced Memory Deficits and Neuroinflammation

Author:

Huang Tianqi12,Lee Sangbin1,Lee Teamin1,Yun Seungbeom3,Kim Yongduk3,Yang Hyunok1

Affiliation:

1. Department of Integrative Biological Sciences and Industry and Convergence Research Center for Natural Products, Sejong University, Seoul 05006, Republic of Korea

2. Korea Institute of Science and Technology (KIST) School, Korea University of Science and Technology (UST), Seoul 02792, Republic of Korea

3. R&D Center, BTC Corporation, Technology Development Center, Gyeonggi Technopark, 705, Ansan 15588, Republic of Korea

Abstract

Korean ginseng (Panax ginseng) is a traditional herbal supplement known to have a variety of pharmacological activities. A smart farm system could provide potential standardization of ginseng seedlings after investigating plant metabolic responses to various parameters in order to design optimal conditions. This research was performed to investigate the effect of smart-farmed ginseng on memory improvement in a scopolamine-induced memory deficit mouse model and an LPS-induced microglial cell model. A smart farming system was applied to culture ginseng. The administration of its extract (S2 extract) under specific culture conditions significantly attenuated cognitive and spatial memory deficits by regulating AKT/ERK/CREB signaling, as well as the cortical inflammation associated with suppression of COX-2 and NLRP3 induced by scopolamine. In addition, S2 extract improved the activation of iNOS and COX-2, and the secretion of NO in LPS-induced BV-2 microglia. Based on the HPLC fingerprint and in vitro data, ginsenosides Rb2 and Rd were found to be the main contributors to the anti-inflammatory effects of the S2 extract. Our findings suggest that integrating a smart farm system may enhance the metabolic productivity of ginseng and provides evidence of its potential impact on natural bioactive compounds of medicinal plants with beneficial qualities, such as ginsenosides Rb2 and Rd.

Funder

BTC Corporation

Ministry of Trade, Industry, and Energy

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3