Kin Recognition in an Herbicide-Resistant Barnyardgrass (Echinochloa crus-galli L.) Biotype

Author:

Ding Le1,Zhao Huan-Huan2,Li Hong-Yu1,Yang Xue-Fang3,Kong Chui-Hua1ORCID

Affiliation:

1. College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China

2. College of Geography and Environmental Science, Henan University, Kaifeng 475004, China

3. College of Life Science, Hebei University, Baoding 071000, China

Abstract

Despite increasing evidence of kin recognition in natural and crop plants, there is a lack of knowledge of kin recognition in herbicide-resistant weeds that are escalating in cropping systems. Here, we identified a penoxsulam-resistant barnyardgrass biotype with the ability for kin recognition from two biotypes of penoxsulam-susceptible barnyardgrass and normal barnyardgrass at different levels of relatedness. When grown with closely related penoxsulam-susceptible barnyardgrass, penoxsulam-resistant barnyardgrass reduced root growth and distribution, lowering belowground competition, and advanced flowering and increased seed production, enhancing reproductive effectiveness. However, such kin recognition responses were not occurred in the presence of distantly related normal barnyardgrass. Root segregation, soil activated carbon amendment, and root exudates incubation indicated chemically-mediated kin recognition among barnyardgrass biotypes. Interestingly, penoxsulam-resistant barnyardgrass significantly reduced a putative signaling (–)-loliolide production in the presence of closely related biotype but increased production when growing with distantly related biotype and more distantly related interspecific allelopathic rice cultivar. Importantly, genetically identical penoxsulam-resistant and -susceptible barnyardgrass biotypes synergistically interact to influence the action of allelopathic rice cultivar. Therefore, kin recognition in plants could also occur at the herbicide-resistant barnyardgrass biotype level, and intraspecific kin recognition may facilitate cooperation between genetically related biotypes to compete with interspecific rice, offering many potential implications and applications in paddy systems.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3